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SUMMARY 
Generalizing the idea of the deformable elastic shell model by Dick and Overhauser 111, a continuum model 
for thermoelastic diatomic elastic solids is presented. The model used is based on the assumption that a 
diatomic solid may be considered to consist of two simple and initially overlapping elastic media interacting 
with each other. Based on this assumption, the kinematics, balance laws and the appropriate constitutive 
relations for heat conducting diatomic elastic solids with multiple temperature are presented. For the illustra- 
tion of the theory, the propagation of time-harmonic thermal waves in elastically rigid heat-conducting 
diatomic solids is studied and some particular cases axe discussed. 

1. Introduction 

It is a well-known fact that most of  the elastic materials are made of  complex molecules rather 

than simple atoms. From the viewpoint of  lattice dynamics it is, therefore, apparent that the 

internal structure of  such solids is multi-atomic. The classical continuum theory of  elastic solids 

ignores the relative motions of  particles in the same cell, and comes up with the result that the 

wave propagation in such an elastic medium is not dispersive. However, the results of  phonon 
dispersion experiments (c.f. Brockhause [2], Harrison [3] and Wallis [4]) show that the phase 

velocity changes with wave number. These facts have forced the researchers to introduce 

generalized continuum theories that take the relative motion of  particles into account. Among 

these studies it is worthy to mention the director theory o f  T0upin [5], the micromorphic 

theory of  Eringen and Suhubi [6], and the multipolar theory of  Green and Rivlin [7]. These 

theories are mathematically complete, yet they have found little applications in physical prob- 
lems concerning elastic solids. 

The continuum theory of  elastic solids with diatomic structure was first laid down by 

Demiray [8, 10], in which the body is assumed to consist of  two simple and initially overlap- 

ping elastic media interacting with each other. The balance laws and thermodynamically admis- 

sible constitutive equations, and related kernel functions characterizing the elastic properties of  

constituents are also reported in the same work. In the present work, a continuum formulation 
of  heat-conducting elastic diatomic solids with multiple temperature is presented. The balance 

laws are formulated for each species in the medium whereas the entropy inequality is formu- 

lated for the whole of  the body. A set of  nonlinear and linear constitutive equations is derived 
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and several particular cases are discussed. As an application of the present derivation, the 
propagation of harmonic waves in elastically rigid heat conductors is studied. Contrary to the 
result of classical thermoelasticity, it is shown that the speed of propagation in rigid conductors 
is finite. 

2. Kinematics and balance laws 

Consider an elastic diatomic continuum whose coordinates of material particles in the unde- 
formed body Bo are denoted by X. Thus the motion of each species in the body is described by 

x(a) = x(a)(X,t) , (or= 1, 2). (2.1) 

The velocity v(a) and the acceleration a(a) of the ath component are defined by 

ax(,.,) X av(a) x v(a) = at =x(a)  , a(~) = at = ~'(~)" (2.2) 

For our future purposes, we define the deformation gradient, its inverse and their time deriva- 
tives as 

F(co = ax( ,o /ax  , H(a) = aX/~x(a) , F(a)H(a) = H(coF(co = I; (2.3) 

F(~) = L(~)F(~) , H(~) = -H(~)L(~) , (2.4) 

where L(a) denotes the space gradient of the velocity vector v(a) of the ath component. For 
other details of the kinematics of diatomic solids the reader is referred to [8, 10]. 

Since the constituents of diatomic solids initially occupy the same material volume in space, 
it might be convenient to work with quantities described on the undeformed body. The balance 
laws are listed below: 

2 

X2 

o _x / X 1 XX2 o ~ X l  

wX 2 

Fig. 1. Finite deformation o f  a diatomic solid. 
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(i) Conservation of  mass: 

P~a) =J(a)P(a)  , ( e =  1,2)  (2.5) 

o where P(a), P(a) and J(a) are respectively the initial and present values of  mass density and 

the Jacobian of the motion of the eth component of the diatomic solid. 

(ii) Balance o f  linear momentum: 

div T(a ) + p~a)(f(a) - a(a)) + G(co = 0 , (a = 1,2).  (2.6) 

where T(~), f(a) and G(a) are respectively the Piola-Kirchhoff stress tensor, the body force and 

the rate of  linear momentum transfer, subject to 

2 

G(~) = O. (2.7) 
o t = l  

(iii) Balance o f  angular momentum: 

2 
1~ (F(~)T(a) - x(a) e G ( a ) ) =  Symmetric. (2.8) 

(iv) Conservation o f  energy: 

o • ( 2 . 9 )  = • + p(~)h(~) + E(~). p(~)e(a) tr(T(~)l~(a)) - G(a) v(a) + div Q(,)  0 

with 

2 
Z E(a) = 0 

~ = 1  

where e(a) is the internal energy density per unit mass, h(a ) is the heat source per unit mass, 

Q(a) is the heat in-flux per unit undeformed area and E(a) is the rate of  energy transfer per unit 
volume of  the ath component. 

Re-defining the energy-rate terms in a proper way, the energy equations may be expressed as 

o • 0 P(~)e(a) = tr(o(~)S(a)) - G(a) .  ~(~) + div Q(~) + p(a)h(a) + e(~) , Ze( . )  = 0. (2.10) 

where 

E ( l ) ~ e ( l )  + G ( 1 ) "  v(l)  + t r (T(1)F( l ) ) ,  

E(2 ) - e(2 ) - G O ) • v O ) - tr(T(2)F(l )), 

0 0 )  ~T(~)  +T(2 ) , 0(2) ~ T(2) , S(1) = F(I)  , S(2) ~ F(2) - F(~), (2.11) 

w(a) = x ( a ) - x ( l  ). 
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(v) Entropy inequality: 
The balance of entropy for a diatomic solid is expressed by 

+ n(~) 
o • Q(a) ~ o P(a)h(a) 

7(a) - P(a)r/(a) - div ~ ] O(a) 

with 

(2.12) 

~n(a) = 0. (2.13) 

where 7/(a ) is the entropy volume density per unit mass, n(a ) is the rate of entropy transfer into 
the ath component, 0(~,) > 0 is the absolute temperature and 3'(~) is the rate of partial entropy 
production per unit volume of the body. Following Bowen and Wiese [11], and Dunwoody and 
Miiller [ 12], the second law of thermodynamics is taken to be 

~V(a)~>0. (2 .14)  

In mixture theories, however, some people use separate entropy inequalities for each compo- 
nent in the mixture (c.f. Eringen and Ingram [13], and Green and Naghdi [14]). 

o Eliminating p(~)h(a) between (2.10), (2.14) and utilizing the Helmholtz free energy, 

if(a) ~ e(a) - 0(a)~(a ), 

the following alternate form for the entropy inequality is obtained 

G(2)'w(m) ( 1 1 ) ~ > 0 ,  (2.15) 
0(2 ) + e o )  0(1 ) 0(2) 

where A(a) - grad 0(a). 
This inequality must be valid for all independent thermodynamical processes. 
For a detailed discussion of the kinematics and balance equations of diatomic solids the 

reader is referred to Demiray [8, 10]. 

3. Constitutive Equations 

In this section we develop a set of constitutive equations for heat conducting diatomic elastic 
solids with multiple temperature. The independent constitutive variables are selected to be 

S(~) , w(2) , 0(~) , A(~) , (~=1,2). (3.1) 
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Thus the general form of a constitutive dependent variable may be given in the following form 

@(a) = @(`,) (S(0), w(2), 0(0 ), A(0 )) , (a,/3 = 1, 2). (3.2) 

A similar form of constitutive functions is valid for other dependent variables. Introducing (3.2) 
into (2.15) we obtain 

o(,,  o(o, ) + of`,, l o(`,, oh, - -  " ~ 7(` ,)  0(` ,)  + tr  I, 0(,~) 0(a ) aS(,,) ) S(co 

Q(`,) • A(a) (G(2) P~(~) ')V)(0) 
o 0(0) aA((~) 0~) \ 0(2) 0(0 ) aw(2) 

1 1 ) /> O. (3.3) 
+e( l )  - 0(2) 0(1) 

Since the inequality (3.3) is linear in 0(a), A(a), S(a) and ~v(2 ), the necessary and sufficient 
conditions for the inequality to be valid for all arbitrary variations of these variables are that 
the coefficients of these quantities must vanish, i.e., 

a t } P[a) ~b(a) , (a= 1,2), (3.4) P(a)r/(,,) = -  0(a) ~ \ 0(a) / - 0(a) 
0 

a£(`,) aZ(2) (3.5) o(`,)-  ~)S(,~) ' G(2) = - 15w(2) " 

Here the functions Z(a) (S(.r), w(2), 0(.r)), (,v = 1, 2) are defined by 

0(~)  - o(~)  - 0=, o-~e) ! ' 

and the remainder of the inequality becomes 

~Q(a)_~_A(a)+ e(a____L ) 1 / > 0 .  
a [_ 0(a ) 0(a) 

(3.6) 

(3.7) 

As is seen from equations (3.4)-(3.5) the stresses and the rate of momentum transfer terms are 
independent of the temperature gradients, whereas the partial entropy densities may depend on 
the gradients of the temperature, the sum of the entropy densities being independent of the 
variables mentioned. 

The principle of objectivity (frame indifference) implies that the free energy should have the 
following form 

¢,<,~) = ¢,(~) (c ,  D, F, 0(~), "Ne)) (3.8) 
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where 

C --- S~'l)S(l ) 

H. Demiray 

, D---S~)S(2 ) , F -S f f l )w(2  ). (3.9) 

Here the superscript ( )T denotes the transpose of  the corresponding tensor. Substituting (3.8) 
into (3.4)-(3.6) we have 

o(1)= 2 ~ S~',) + ~ S~) + w(2), 

0E(2 ) ) T aZ(2) (3.10) o(2)= S(2) ~ , G ( 2 ) = - S ( 1 )  aP 

The set of  equations (3.10) gives the most general form of constitutive equations for heat 
conducting elastic diatomic solids. In what follows we shall present the linear constitutive 

equations. 

4. Linear constitutive equations 

In the linear constitutive equations the constitutive independent variables may be expressed as 

2 E = C + l ~ [ g r a d u + ( g r a d u )  T] , D - g r a d w  , P_=w~--w(2), 

0 ( a ) = 0 o + T ( a )  , with l T(.)  l << 00 , 0 o > 0 ,  (4.1) 

where E, u, 0o and T(a) are respectively the Lagrangian strain tensor, the Cartesian components 

of the displacement vector of species (1), the constant equilibrium temperature and the devia- 

tion of absolute temperature from the equilibrium temperature. Furthermore, approximating 
1/0(:,) by (1 - T(a)/Oo)[Oo, and keeping only the quadratic terms in independent variables, we 
have from (3.4) 

1 
= - - p( , . , )  @ ( ~ ) )  2; = Z(e) 2;+(-l)a Ooo (T(2) T ( l ) )L in (2 ;  o o , ~ P(c=) ~J(a), 

where the symbol (Lin) is used to denote the linear part o f  the corresponding quantities. 
For linear and isotropic materials the total free energy Z may be expressed by 

(4.2) 

2 ; =  2;0 0 0 1 - ~P(a) r / (a ) r (a)  - ~ (as - 2T1)T(21) - (ol6 + rl + T2)T( , )T(2)  

1 
- ~ (~7 - 2r2)T~2) - (131 + ~3 - r3)T(1 )trE - (~2 + ~4 + zz)T(2)trE 

1 (XI + 2X2 + X3)(trE) 2 + - ([33 + T4)T(1)trD - (~4 - r4)T(2)trD + 

(~tq + 2/.t 2 +/a3)tr(E 2) + ½ Xa(trD) 2 + (P3 + K)tr(DDT) + (/-(3 - K)trD 2 

1 + (?,2 + h3)trEtrD + 2(/a2 +/a3)tr(DE) + ivw • w. (4.3) 
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Similarly the linear parts o of p(a)qJ(a) may be given by 

• 0 0 0 Lm (P(1)~b(l )) = P(l )qJ(l ) -- 0o(Zs T O ) + z2 T(2) + %trE + 7" 4 trD), (4.4a) 

• 0 0 0 Lm (P(2)~(2)) = P(2)~(2) - 0o(71 T(1) + 7"7 T(2) + z3trE + 7"strD). (4.4b) 

Substitution of  (4.3) and (4.4a, b) into (3.10) yields the following linearized constitutive 

equations: 

o =P~)l)r/~l +(¢~s -7"x)T(I )+(a6  + 7"2)T(2) +(/31 +/33 -7"s)trE P(l)r /( l )  ) 

+ (/33 + 7"4)trD, (4.5a) 

0 0 0 
0(2)77(2) = P(2)r/(2) + (~6 + rl )T(1 ) + (~7 - 7-2 )T(2) + ~2 +/34 + 7-3)trE 

+ ~3 - 7-4)trD, (4.5b) 

a( 1 ) = [(3`1 + 23.2 + 3`3)trE + (3`2 + 3`3 )trD - (/31 +/33 )T(l ) - (/32 +/34 )T(2) ]I 

+ (2/21 + 4/22 + 2/23)E + (/12 +//3)( D + DT), (4.6a) 

0(2) = [3`3 trD + (3`2 + 3`3 )trE - t33 T(I) -/34 T(2)]I + ~ s  + I¢) D r  + ~ s  - tc)D + 2(/22 +/23)E, 

(4.6b) 

G(2 ) = -vw,  (4.7) 

0 0 where I is the identity matrix and p(a)r/(a) is the equilibrium value of  the entropy density of  
the ath constituent. If the body is assumed to be initially stress-free, then further conditions 

may be put on these coefficients, i.e., 

7-3 + r6 = r4 + rs = O. 

Similarly the heat-flux vectors and the rate of energy transfer terms may be expressed as 

Q(l) = KtA(1)  +K2A(2) +71w, 

Q(2) =K3A(I )  +K4A(2) + T2W, (4.8) 

e(l ) = - al T(1) + a2 T(2) +a3trE + a4trD. 

If (4.8) is introduced into the linearized form of  the entropy inequality (3.7), an important 
implication deduced from the inequality will be as follows 

"Yl = 7 2 = 0  , a 3 = a 4 = 0  , a2 = - a l = a ~ > 0 .  (4.9) 
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Hence, we see that the heat flux does not depend on the relative displacement w and the 
reduced form of the energy transfer term becomes 

e o )  = a (T(2) -  TO)). (4.10) 

This shows that, in the linear constitutive theory, when the temperatures of the species are the 
same there will be no energy exchange between the constituents. Moreover, entropy inequality 
(3.7) may put some restrictions on the coefficients Ki(i = 1, 2, 4), but to save space we do not 
list them here. 

Now let us return to the investigation of energy equations (2.10). Since we assumed that the 
initial stresses vanish, in the linear theory the energy equations become 

o o div Q(a) + O(a)h(a) + e(a ) - Lin [P(a)e(a)] = 0. (4.11) 

Using the relation ~b(a) = e(a) -0(~)r~(a) and the expressions (4.2) and (4.8), we have 

o o o o o Lin [p(~)e(~)] = Lin [p(~)~0(~) + p(~)r/(a)0 o ] + p(a)r/(~)T(~). (4.12) 

Substituting (4.2), (4.5) and (4.8) into (4.11), the linearized expressions of the energy equation 
become 

K,V2T(,)  +K2V2T(2) +a(r(2)- ro ) ) -Oo  [as T(1) + a6T(2) + ~ ,  +~2)trE 

+ ~2tr[) + P~l )h(]) = 0, (4.13a) 

K3V2T(,) + K4V2T(2)+a (T( ] ) -  T(2))-00 [ot6T(,)+ OtTT(2 ) +(f12 +~a)trF. 

+ #atrb + P~2)h(2) = 0, (4.13b) 

where V 2 is the Laplacian in three-dimensional E-space. 

Noting the relation between the vectors (u, w) and u(a) (a = 1,2) and the tensors T(~) and 
o(a), e.g., 

u ( l ) = u  , u (2 ) -=u+w , T o ) = o ( ] ) - o ( 2  ) , T(2)=o(2) ,  (4.•4) 

from (4.6) and (4.7) one can express the stress tensors T(a) in terms of the gradients of u(a). 
Since it is a straightforward substitution we will not repeat hem them here. 

Field Equations: 
Having these linearized constitutive relations we may obtain the field equations governing 

heat conducting elastic diatomic solids. Introducing (4.6) and (4.7) into (2.6) and noting the 
relations (4.14) the following differential equations are obtained: 

(X~ +/~ - K ) ~ -  u(l) + ~  + K)V2u(I) +(X~ +/as + ~ ) ~ "  u(2) +(U2 --K)V2u(2) 
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0 

+ V(U(2 ) -- U(l)) -- ~IVT(I ) - ~]2VT(2 ) + p(l)(f(1) - 0(1)) = 0, (4.15) 

(~2 +/22 + K ) ~ "  U(I ) +(./22 - - K ) ~ 2 U ( 1 )  + ( ~ 3  +/23 - - K ) ~ "  U(2 ) +(/23 + K)~2U(2 )  

0 
-- P(U(2 ) -- U(I )) -- f l3TT(I  ) - f14'~7T(2 ) + ,0(2)(f(2 ) - i i (2))  = 0. (4.16) 

These field equations (4.13)-(4.16) may be used in solving some properly posed initial and/or 

boundary value problems of heat conducting elastic diatomic solids. 

5. Wave propagation in elastically rigid heat conducting diatomic solids 

As is known from the classical theory o f  thermoelasticity, there is no wave propagation in 
elastically rigid heat conducting monoatomic solids. In other words, any thermal disturbance 
created at any material point of rigid conductors is instantaneously felt by other particles at far 

distances. This means that in such solids the thermal disturbance propagates with an infinite 
speed. This result seems to be reasonable for the case of high temperature, where the vibrating 
particles convey certain information to the next particles with almost an infinite speed. How- 
ever, for the case of low temperature physics the speed of information carrying particles is 
finite; consequently, the speed of thermal disturbances must be finite. Such a result contradicts 
the findings by the classical theory of thermoelasticity of monoatomic solids. In order to bridge 
the gap between the existing theories and the physical observations, a refined mechanical model 
must be presented for the thermal behavior of elastic solids. Among such efforts we may 
mention the works by MOiler [15], Green and Laws [16], and Suhubi [17], where they have 
treated the entropy flux to be independent of heat flux and introduced the time rate of 

temperature as an independent constitutive variable. Since in such cases the final energy equa- 
tion includes the second-order time derivative, as well as second-order space derivatives of 

temperature, the solution admits a wave solution with a finite speed. 
In the present work we will show the existence of thermal waves in elastically rigid heat 

conducting solids by use of a different mechanical model. The theoretical model that we would 
like to use here is the heat conducting elastic diatomic solid with multiple temperature distribu- 
tion. The field equations of elastically rigid heat conductors may be obtained from equations 
(4.13)-(4.16) by setting E(a ) = 0 (a = 1, 2). If this is done the result follows 

KlV2 T(1)+ K2V2T(2)+ a(T(2 ) - T ( I ) ) -  0o(ozsT(1 ) + o~67"(2))-t-p~l)h(1 ) = 0 ,  (5.1) 

• 0 
K3V2 T(1) + K4V2 T(2) +a(T(l  ) - T(2)) - 00(016 7"(1 ) + 0[7T(2)) + D(2)h(2)  = 0. (5.2) 

Here we consider the propagation of simple harmonic waves in the absence of heat-source 
terms. The appropriate form of such a wave, propagating in the x~ = x direction, is given by 

T(a) = OoT~)  exp [i (kx  - cot)l , (a = 1, 2) (5.3) 

where T(°a) is the complex amplitude of the wave, k is the wave number and co is the angular 
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frequency of the wave. Substituting (5.3) into (5.1) and (5.2) the following homogeneous 

equations are obtained 

(ias0oCO - Ka k 2 - a)T~ ) + (i~60oW - K2 k 2 + a)T(°2) = 0, (5.4) 

(ia60oCO - K3k  2 +a)T?l) + (iaTOow - K4k  2 - a ) T ~ )  = 0. (5.5) 

In order to have a non-zero solution for T(°l) and T(°2), the determinant o f  the coefficient 

matrix obtained from equations (5.4) and (5.5) must vanish, i.e., 

CoW 2 + i(cl + c2k2)w - (c3 + c4k2)k 2 = 0, (5.6) 

where, for brevity, we have set 

CO (0~5 Or7 2 2 = - a 6 ) 0  o , cl =a0o(~Vs +aT + 2 a 6 )  , 

c3 =a(K1 +K2 +Ks  +K4)  , c4 = K I K 4  - K 2 K 3 .  

Assuming that k is a real quantity, according to representation (5.3), in order to have a 

physically admissible wave solution one must have Im(¢o) <~ O. Setting k = 0 in equation (5.6) 
the cut-off frequencies are obtained as 

t°o,1 = 0 , ~O0, 2 = -- iC/Co , provided Co :/: 0. (5.7) 

For the reasons mentioned above Co and cl must satisfy the condition (c~/Co) > O. 

Replacing co in (5.6) by i[2, an alternate form for the dispersion equation may be obtained: 

C0122 + (Cl + c2k2)[2 + (c3 + c4k2)k 2 = 0. (5.8) 

The roots of  this equation are given by 

1 
[21,2 = ~ [ -  (cl + c2k 2) +- iA%(k)] (5.9) 

where 

A(k) = 4Co(C3 + c 4 k 2 ) k  2 - (el + c2k2) 2- (5.10) 

In order to have an admissible wave solution one must have A :> 0 for some values of  k. It is 
seen that for small wave numbers, i.e., k -~ 0, this condition is not satisfied. However for 

sufficiently large values of  k, A(k) may have positive values, that is, thermal waves may propa- 
gate in rigid heat conductors. 

C2 = 0o[rvsK4 + otTK1 - o~6(K2 +K3)] ,  
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